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Predicting Student Knowledge
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Temporally Distributed Study and Memory Retention

Massed study
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Memory decays more slowly with spaced study

Spaced study




Product Recommendation
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Time Scale and Temporal Distribution of Behavior

Critical for modeling and predicting many human activities:

= Retrieving from memory

Purchasing products

Selecting music X1 X3 Xg

Making restaurant reservations >
t, t, t,

Posting on web forums and social media

Gaming online

Engaging in criminal activities

Sending email and texts



Recent Research Involving Temporally Situated Events

Discretize time and use tensor factorization or RNNs

= e.g., X. Wang et al. (2016), Y Song et al. (2016), Neil et al. (2016)
Hidden semi-Markov models and survival analysis

= Kapoor et al. (2014, 2015)

Include time tags as RNN inputs and treat as sequence processing task
= Du et al. (2016)

Temporal point processes

= Du et al. (2015), Y. Wang et al. (2015, 2016)

Our approach

= incorporate time into the RNN dynamics



Temporal Point Processes

Produces sequence of event times T = {t;}

Characterized by conditional intensity function, h(t)

h(t) = Pr(event in interval dt |7")/dt
E.g., Poisson process

= Constant intensity function 1 H l ll l 1 lll ll
h(t) = u

. . h(t)
E.g., inhomogeneous Poisson process \—/\/

= Time varying intensity l l l ul l l lu
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Hawkes Process

Intensity depends on event history
= Self excitatory

= Decaying

Intensity decays over time

= Used to model earthquakes,
financial transactions, crimes

= Decay rate determines time
scale of persistence
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Hawkes Process

Conditional intensity function

h(t) =pu+a Z e V(=4)  with T = {t1, ..., tj, ...} times of past events

tj<t

Incremental formulation with discrete updates

h():ﬂandt():()

hy = p+ e VA (hy_y — p) + ax,

Aty =t — tg—1 |1 ifeventoccurs
. 0 if no event
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Prediction

Observe a time series and predict what comes next?
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Time

Given model parameters, compute intensity from observations:

he = p+ e VB (hy_y — 1) + axy

Given intensity, compute event likelihood in a At window:
Prity < tp_q+ At xe = 1|ty o, ti_q) = 1 — e~ (-1=w(1=e72) /y—pst = 7, (At)



Key Premise

The time scale for an event type may vary from sequence to sequence

H g
[ | N |

Therefore, we want to infer time scale parameter y appropriate for each
event and for each sequence.




Bayesian Inference of Time Scale

Treat y as a discrete random variable to be inferred from observations.
"y €{yy,V2 -, Ys} Where S is the number of candidate scales

= log-linear scale to cover large dynamic range

Specify prior on y

= Pr(y =v,)

Given next event x; (present or absent) at t;, perform Bayesian update:

= Pr(yilxq.p t1.0)e® Pk, el X0 k1, E1.e— 1, Vi) PE(YVi |1 X1 k-1, E11—1)

X
(# + e Vihte(hy_q; — H)) ) Zyi (Aty)
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induction
of time scale
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sequences
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intensity function

intensity function
from generative process
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log Intensity
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Effect of Spacing
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% Recall

Human data

Cepeda, Vul, Rohrer, Wixted, & Pashler (2008)

Neural net model related to HPM
Mozer, Pashler, Cepeda, Lindsey, & Vul (2009)

¢ 7 day retention

# 35 day retention

+ 70 day retention

a

% 350 day retention

% 1‘4 2‘1 3‘5_ 7‘0
Intersession Interval (Days)

105



Two Alternative Characterizations of Environment

All events are observed

= e.g., students practicing retrieval of
foreign language vocabulary

= Likelihood function should reflect
absence of events between inputs

Pr(y;lxy., t1.x) 2@ el X1 k=1, E1ik=1, VOPE(Yi |1 X 16— 1, E1.k—1)

A e
(.U + e Vibte(hy_y ; — #)) Zyi (Aty)

Some events are unobserved

= e.g., shoppers making purchases on
amazon.com (but purchases also made
on target.com and jet.com)

= Likelihood function should marginalize

over unobserved events and reflect the
expected intensity

Pr(yvilxyp, t1.x) 2P, trelX1:k—1, E1:k—1, Vi) PEQY; | X1 k-1, E1 1)

a Xk
( - (hk—l S )e_yi(l_y_i)mk>
1—-aly; 1—-aly;




Hawkes Process Memory (HPM) Unit

Holds a history of past inputs (events)
Memory persistence depends on input history
No explicit ‘input’ or ‘forget’ gate

Captures continuous time dynamics




Embedding HPM in an RNN

Because event representations are learned, input x denotes Pr(event)
rather than truth value

= Activation dynamics are a mean field approximation to HP inference
Marginalizing over belief about event occurrence:

Xp=1
Pr(yilxspe tra) ~ Zypmo POk tielX1-1, rie—1, YO PT (il X1—1, t1:—1)

Output (to next layer and through recurrent connections) must be
bounded.

= Quasi-hyperbolic function
h(t + At)/(h(t + At) +v)



Generic LSTM RNN

predicted event

current event



HPM RNN

predicted event e e e ° o o
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Word Learning Study

(Kang et al., 2014)

Data
= 32 human subjects
= 60 Japanese-English word associations

= each association tested 4-13 times over
intervals ranging from minutes to
several months

= 655 trials per sequence on average
Task

= Given study history up to trial t,
predict accuracy (retrievable from memory
or not) for next trial.

Expanding Interval Schedule (Days)
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Word Learning Results

Majority class (correct) 62.7%
Traditional Hawkes process 64.6%
Next = previous 71.3%
LSTM 77.9%
HPM 78.3%

LSTM with At inputs 78.3%



Reddit Postings
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Reddit

Data
= 30,733 users

= 32-1024 posts per user

= 1-50 forums

= 15,000 users for training (and validation), remainder testing

Task

= Predict forum to which user will post next, given the time of the posting



Reddit Results

Next = previous 39.7%
Hawkes Process 44.8%
HPM 53.6%
LSTM (with At inputs) 53.5%

LSTM, no input or forget gate 51.1%



Human behavior and preferences have dynamics that operate across a
range of time scales.

It seems like a model based on these dynamics should be a good predictor
of human behavior.

... and hopefully also a good predictor of other multiscale time series.



Key Idea of Hawkes Process Memory
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State Of The Research

LSTM is pretty darn robust

Some evidence that HPM and LSTM are picking up on distinct information
in the sequences

= Possibility that mixing unit types will
obtain benefits

= Can also consider other types of units - W
premised on alternative temporal point .. /}/1_/40/4,//} il

processes, e.g., self correcting processes

2 0

Time

Potential for using event-based model even for traditional sequence
processing tasks



Novelty Of Approach

The neural Hawkes process memory belongs to two new classes of neural
net models that are emerging.

= Models that perform dynamic parameter inference as a sequence is
processed (vs. stochastic gradient based adaptation)

see also Fast Weights paper by Ba, Hinton, Mnih, Leibo, & lonescu (2016), Tau
Net paper by Nguyen & Cottrell (1997)

= Models that operate in a continuous time environment

see also Phased LSTM paper by Neil, Pfeiffer, Liu (2016)



