Neural Hawkes Process Memory

Michael C. Mozer

University of Colorado, Boulder

Robert V. Lindsey

Imagen Technologies

Denis Kazakov

University of Colorado, Boulder

Predicting Student Knowledge

Temporally Distributed Study and Memory Retention

Memory decays more slowly with spaced study

Product Recommendation

Time Scale and Temporal Distribution of Behavior

Critical for modeling and predicting many human activities:

- Retrieving from memory
- Purchasing products
- Selecting music
- Making restaurant reservations
- Posting on web forums and social media
- Gaming online
- Engaging in criminal activities
- Sending email and texts

Recent Research Involving Temporally Situated Events

Discretize time and use tensor factorization or RNNs

e.g., X. Wang et al. (2016), Y Song et al. (2016), Neil et al. (2016)

Hidden semi-Markov models and survival analysis

Kapoor et al. (2014, 2015)

Include time tags as RNN inputs and treat as sequence processing task

Du et al. (2016)

Temporal point processes

Du et al. (2015), Y. Wang et al. (2015, 2016)

Our approach

incorporate time into the RNN dynamics

Temporal Point Processes

Produces sequence of event times $\mathcal{T} = \{t_i\}$

Characterized by conditional intensity function, h(t)

 $h(t) = Pr(\text{event in interval dt } | \mathcal{T})/\text{dt}$

E.g., Poisson process

Constant intensity function

$$h(t) = \mu$$

E.g., inhomogeneous Poisson process

Time varying intensity

Hawkes Process

Intensity depends on event history

- Self excitatory
- Decaying

Intensity decays over time

- Used to model earthquakes, financial transactions, crimes
- Decay rate determines time scale of persistence

Hawkes Process

Conditional intensity function

$$h(t) = \mu + \alpha \sum_{t_j < t} e^{-\gamma \left(t - t_j\right)}$$
 with $\mathcal{T} \equiv \left\{t_1, \dots, t_j, \dots\right\}$ times of past events

Incremental formulation with discrete updates

$$h_0 = \mu$$
 and $t_0 = 0$

$$h_k = \mu + e^{-\gamma \Delta t_k} (h_{k-1} - \mu) + \alpha x_k$$

$$\Delta t_k \equiv t_k - t_{k-1}$$

Prediction

Observe a time series and predict what comes next?

Given model parameters, compute intensity from observations:

$$h_k = \mu + e^{-\gamma \Delta t_k} (h_{k-1} - \mu) + \alpha x_k$$

Given intensity, compute event likelihood in a Δt window:

$$\Pr(t_k \le t_{k-1} + \Delta t, x_k = 1 | t_1, \dots, t_{k-1}) = 1 - e^{-(h_{k-1} - \mu)(1 - e^{-\gamma \Delta t})/\gamma - \mu \Delta t} \equiv Z_k(\Delta t)$$

Key Premise

The time scale for an event type may vary from sequence to sequence

Therefore, we want to infer time scale parameter γ appropriate for each event and for each sequence.

Bayesian Inference of Time Scale

Treat γ as a discrete random variable to be inferred from observations.

- $\gamma \in \{ \gamma_1, \gamma_2, ..., \gamma_S \}$ where *S* is the number of candidate scales
- log-linear scale to cover large dynamic range

Specify prior on γ

• $Pr(\gamma = \gamma_i)$

Given next event x_k (present or absent) at t_k , perform Bayesian update:

•
$$\Pr(\gamma_i|\mathbf{x}_{1:k}, \mathbf{t}_{1:k}) \sim p(\mathbf{x}_k, t_k|\mathbf{x}_{1:k-1}, \mathbf{t}_{1:k-1}, \gamma_i) \Pr(\gamma_i|\mathbf{x}_{1:k-1}, \mathbf{t}_{1:k-1})$$

$$\left[\left(\mu + e^{-\gamma_i \Delta t_k} \left(h_{k-1,i} - \mu \right) \right)^{x_k} Z_{ki} \left(\Delta t_k \right) \right]$$

Effect of Spacing

Human data

Cepeda, Vul, Rohrer, Wixted, & Pashler (2008)

Neural net model related to HPM

Mozer, Pashler, Cepeda, Lindsey, & Vul (2009)

Two Alternative Characterizations of Environment

All events are observed

- e.g., students practicing retrieval of foreign language vocabulary
- Likelihood function should reflect absence of events between inputs

$$\Pr(\gamma_i|\mathbf{x}_{1:k},\mathbf{t}_{1:k}) \sim p(x_k,t_k|\mathbf{x}_{1:k-1},\mathbf{t}_{1:k-1},\gamma_i)\Pr(\gamma_i|\mathbf{x}_{1:k-1},\mathbf{t}_{1:k-1})$$

$$\left(\mu + e^{-\gamma_i \Delta t_k} \left(h_{k-1,i} - \mu \right) \right)^{x_k} Z_{ki} \left(\Delta t_k \right)$$

Some events are unobserved

- e.g., shoppers making purchases on amazon.com (but purchases also made on target.com and jet.com)
- Likelihood function should marginalize over unobserved events and reflect the expected intensity

$$\Pr(\gamma_i|\mathbf{x}_{1:k},\mathbf{t}_{1:k}) \sim p(x_k,t_k|\mathbf{x}_{1:k-1},\mathbf{t}_{1:k-1},\gamma_i)\Pr(\gamma_i|\mathbf{x}_{1:k-1},\mathbf{t}_{1:k-1})$$

$$\left(\frac{\mu}{1-\alpha/\gamma_i} + \left(h_{k-1} - \frac{\mu}{1-\alpha/\gamma_i}\right)e^{-\gamma_i\left(1-\frac{\alpha}{\gamma_i}\right)\Delta t_k}\right)^{x_k}$$

Hawkes Process Memory (HPM) Unit

Holds a history of past inputs (events)

Memory persistence depends on input history

No explicit 'input' or 'forget' gate

Captures continuous time dynamics

Embedding HPM in an RNN

Because event representations are learned, input x denotes Pr(event) rather than truth value

Activation dynamics are a mean field approximation to HP inference
 Marginalizing over belief about event occurrence:

$$\Pr(\gamma_i|\mathbf{x}_{1:k},\mathbf{t}_{1:k}) \sim \sum_{x_k=0}^{x_k=1} p(x_k,t_k|\mathbf{x}_{1:k-1},\mathbf{t}_{1:k-1},\gamma_i) \Pr(\gamma_i|\mathbf{x}_{1:k-1},\mathbf{t}_{1:k-1})$$

Output (to next layer and through recurrent connections) must be bounded.

Quasi-hyperbolic function

$$h(t + \Delta \hat{t})/(h(t + \Delta \hat{t}) + \nu)$$

Generic LSTM RNN

HPM RNN

Word Learning Study (Kang et al., 2014)

Data

- 32 human subjects
- 60 Japanese-English word associations
- each association tested 4-13 times over intervals ranging from minutes to several months
- 655 trials per sequence on average

Task

Given study history up to trial t, predict accuracy (retrievable from memory or not) for next trial.

Word Learning Results

Majority class (correct)	62.7%
Traditional Hawkes process	64.6%
Next = previous	71.3%
LSTM	77.9%
HPM	78.3%
LSTM with Δt inputs	78.3%

Reddit Postings

Reddit

Data

- **30,733** users
- **32-1024** posts per user
- 1-50 forums
- 15,000 users for training (and validation), remainder testing

Task

Predict forum to which user will post next, given the time of the posting

Reddit Results

Next = previous	39.7%
Hawkes Process	44.8%
HPM	53.6%
LSTM (with Δt inputs)	53.5%
LSTM, no input or forget gate	51.1%

Human behavior and preferences have dynamics that operate across a range of time scales.

It seems like a model based on these dynamics should be a good predictor of human behavior.

... and hopefully also a good predictor of other multiscale time series.

Key Idea of Hawkes Process Memory

Represent memory of sequences at multiple time scales simultaneously

Output 'appropriate' time scale based on input history

State Of The Research

LSTM is pretty darn robust

Some evidence that HPM and LSTM are picking up on distinct information in the sequences

- Possibility that mixing unit types will obtain benefits
- Can also consider other types of units premised on alternative temporal point processes, e.g., self correcting processes

Potential for using event-based model even for traditional sequence processing tasks

Novelty Of Approach

The neural Hawkes process memory belongs to two new classes of neural net models that are emerging.

- Models that perform dynamic parameter inference as a sequence is processed (vs. stochastic gradient based adaptation)
 see also Fast Weights paper by Ba, Hinton, Mnih, Leibo, & Ionescu (2016), Tau Net paper by Nguyen & Cottrell (1997)
- Models that operate in a continuous time environment see also *Phased LSTM* paper by Neil, Pfeiffer, Liu (2016)